The Need for
Domain-Specific
Solutions

David E. Bernholdt

Oak Ridge National Laboratory
bernholdtde@ornl.gov

iﬁl‘ U.S. DEPARTMENT OF %
WENERGY OAaK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

12-15 March 2012 SOS 16 1

The Costs of Exascale Computing
won’t be Limited to Hardware

» The computational science & engineering community

relies extensively on large, long-lived codes
— O(100kK) lines typical, some O(1M) lines or more
— Lifespans often measured in decades

 Taking full advantage of exascale systems will require

significant changes, rewrites (1.5x)
— Exposing and managing parallelism, large node parallelism,
multilevel parallelism, accelerators (or not)
— Exposing and managing locality & data movement
— Energy and power constraints
— Limited memory, limited I/O (bandwidth & capacity)
— Resilience concerns exposed to programmer
— FLOPS free/data movement expensive, new algorithms?

12-15 March 2012 SOS 16

Reducing the Costs of Application
Software for Exascale

* The number of lines of code a programmer can write in a
fixed period of time is the same independent of the

language used (Corbato’s Law)

— Productivity and reliability depend on the length of the code, not
the language used

» Create a programming environment that better matches

the characteristics of exascale-era hardware
— Reduce the cost of mapping the code onto the hardware

— Today’s programming environments are based on hardware 30+
years old with 20 year old ideas bolted on

» Create a programming environment that better matches

the characteristics of the scientific problem being solved
— Reduce the cost of mapping the equations into code

12-15 March 2012 SOS 16

Domain-Specific Languages (DSLs)

* Programming language dedicated to a particular problem
domain, a particular problem representation technique,

and/or a particular solution technique

— Libraries may be used in a similar sense

— Example domains (from WOLFHPC11): PDEs, relativistic
spacetime, preconditioned iterative solvers, dense linear algebra,
quantum chemistry, stencil computations, OpenCL

 Benefits for scientist-programmers...

— Express computations at a higher level of abstraction — more
compact code

— Closer to the way they think about/publish problem

— Focused (constrained), natural environment makes errors less
likely, better error messages make debugging easier

— Let compiler worry about how to implement most efficiently for
target platform

12-15 March 2012 SOS 16

Sometimes the Equations Don’t
Even Look Like Equations!

VY VY WYV

! 20 2b 2¢ 2d 2e 30 3b

Q“" —Q 0;0 WV YV vV dwV éwV
AE = + + | 40 4b 4¢c 50 5b
VooV el gyl gV

Energy /7 oy W W\ V¥ W
T, amplitudes
CCSDT method

(quantum chemistry) WA W Vo WY
T, and T; amplitude . * 9 s

equations not shown AWV OWY WY W

0o 0

R s

12-15 March 2012 SOS 16

CCSD 7, Amplitude Equation
VYV WY WY

| 20 2b 2¢ 2d 2e 30 3b

VooV el wlV Y VgV
vy vy oy g\
WW e/ Vo ey

n'\gﬂ/ WV WY \A'/|‘I°\A/

0o 0

12-15 March 2012 SOS 16

CCSD 7, Amplitude Equation

0= (ﬂbllm>+2(ﬁm Factls) — ;(fk,-t"" Futiy) +
5 Dkl
PiH) Y
3 PP() S (Rl + 3 S e

kled

7+ P(if) P(ab) 3 (kb||e)ie+
ke

ﬂb) ;(kbllizf)ih

t;‘;t’;‘}‘ P(if)= Z(kl“rd)tfgtﬂ—}-
klat klat

P{nb)%§(killij>t2t?+P(ij)%g - PGHPE)Y

P({ab) z fkct;ti'; + P(ijf) E fh:tft;ﬁ

P(if) Y- (ki ity +P(ab)z

kic

P(if)P(ab) Z

ed)igif +

% + P(i) P(ab) 3 (ki [ic)tftl +
kic

“F v

ll

Z(k” |edytites —

Hc

P(if)P ab - i+ PP Z(kl”r'j}t“tktf
k!c
P(if) ¥ o? — P(ab) Y (ki||edytgites +
kled kled
PE)7Y ()7 ¥
Had kicd
P(ij) edyiStyie + Pif) Plab)~ E(kl“r‘d)t"tkt“t,

.Hcd 4 i
12-15 March 2012 SOS 16

CCSD 7, Amplitude Equation

hbag[j‘;gff"?5_;@;2,[;[]%@;;_[;{;ﬁéﬁl[’k{?g]]*;ﬁ%fp{{i[ﬁgfé[]'f{’ﬁ}ggi4’3?;;;1 Some additional information about the
+ * + i,cl* i -
ot ed e sl fecl et CCSD method. ..

t
SOtk BT QAT] (o) eumi ATk ol o -
Sumlt e Kbl ad ot ol sumitt kb enikare © fl,a] and t[i,a] are rank-2 tensors
symtthel) el ke smifedl fiech | n ¥
sum(t[i,c]*t[k,a]* v[k b,c,jl.{k }] +2*sum(t[i,k,a,c]*v[k,b,c,j].{} * V[I’J’a’b] and t[I’J’a’b] are rank-4 tensorS
sum(t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] sum[t[| c]*t[k aJl* v[k b,
+sum(t[i,c]*t[j, d]*t[k a]*t[l b] 1,c,d {k

Mool G LI Led-2sumitikbl o f v, and t have permutational symmetry

o PR e P o5 thore i '

ssum t[ti’ci](*t[l’bl’t*t[jl’lédda]*\{([dl kel rsumiiikedf properties in their indices, e.g., t[i,j,a,b]
+si‘i£Tt[[.['k cca?ltuuld b]]v[l[< &l ik {{ Ich}]}]+su?nu[[[B[c[]l*t[jad]Jt = -{[),1,a,b] = -t[i,},b,a] = 1[j,i,b,a]

2 sumll eyt Ladrvicle.d it i A K b :
2*sum(t{k.cJ.1.b,a]*v{k...c.il.{k.I,c}] +sumft[k.a]*t[j.L.b.c]*v] ° f, v, and t are block sparse in patterns
rsum[tlj,][K. a,b] VK. |cil.ik.I,c}] +sumfti, ek, a] i b]™ : .
2*sum(t[l,b]*tfi.k,a,cl*vik,l,c,il.{&,1.c}] +sum(t{l,bI"tfi.k,c,al*v| dictated by molecular symmetrles (and
+sumlt]} o]t AT k,a,bivik.l.d cl.{k.I.c.d}] +sumfij.d]*{[Lb _ _

2*sum([tfi,k,c,d][j,|,b a] vk, d cl{k| cd}] -2*sumitfi,k,a,c]’ permutat|ona| Symmetnes)

+sum(t[i,k,a,b]*[j,l,c,

,C
]{
vlk,l,c,d],
k,l, K,
k,l, k
k,l, k,
Ic l,

EEEE&FCS]%tEHE]tEﬁE Theory # Ter . |ndices i,j,k,| refer to “occupied orbitals”
Zoumtilertiicabl) ~ CCD 1« Indices a,b,c,d refer to “virtual orbitals”
CCSD 48 13,213 1982
CCSDT 102 33,932 1988

CCSDTQ 183 79,901 1992

12-15 March 2012 SOS 16

Benefits of DSLs for Computers

* Preserve domain-specific information which would be lost
In translation to general purpose language

» Use domain-specific information to improve
Implementation

« Constrained (focused) environment may allow
more/better/easier optimizations

 Higher-level specification of computation gives compiler
more leeway in translating to target platform

12-15 March 2012 SOS 16

The Tensor Contraction Engine

Oak Ridge National Laboratory Ohio State University

David E. Bernholdt, \Venkatesh Alina Bibireata, Uday
Choppella, Robert Harrison Bondhugula, Daniel Cociorva,
Xiaoyang Gao, Albert Hartono,

University of Florida Sriram Krishnamoorthy;,

So Hirata Sandhya Krishnan, Chi-Chung
Louisiana State University Lam, Quingda Lu, Russell M.

Gerald Baumgartner, J Pitzer, P Sadayappan,

Ramanujam Alexander Sibiryakov

University of Waterloo

pr— Marcel Nooijen, Alexander
% / Auer
/'!

12-15 March 2012 SOS 16

10

TCE Language

:, d
=

and Software Architecture

Lo T T =S, = ZAacikaeﬂCdﬁchdel

‘/ cefkl
range V = 3000;
range O = 100;

 Tensor Expressions

f !
TCE Language
Parser

/
A T —

Simple Expression Tree

index a,b,c,d,e,f : V; Optimizations
, o] s
index i,7j,k,1 O; P
o -~ < Loop Fuser ‘
mlimit = 100GB; P ‘ Simple Code 1
G t
enherator Abstract Syntax Tree

procedure P(in A[V,V,0,0], in B[V,V,V,0],
in C[V,V,0,0], in D
out S[V,V,0,0])=

begin
Sla,b,1i,7]

sum[Ala,c,i,k]
* C[d,f,3,k] *
{c,e, £, k,1}1; ¥

Generator

A S

Abstract Syntax Tree
Optimizations !

St I

end

Generated Code

/ Code Generator

12-15 March 2012 SOS 16

11

TCE Optimizations

Algebraic Transformations

— Minimize operation count Tensor Expressions
(ICCS’05, ICCS’'06) '

L . > Algebraic S N |
Memory Minimization Transformations |
— Reduce intermediate storage |

via loop fusion (LCPC'03) |

Sequence of Matrix Products
Element-wise Matrix Operations
Element-wise Function Eval.

No sof'n fits disk Memory
« Space-Time Transformation Minimization Specification
— Trade-offs between storage
and recomputation (PLDI'02) No sol'n fits disk = Sol'n fits disk, not mem. Sol'n fits mem.
« Data Locality Optimization Spaceﬁme
— Optimize use of storage Trade-Offs R Locality Management g
hierarchy via tiling (ICS’01, ! [T
HiPC’03, IPDPS’04) Sofn fits mem. ‘

Data Dist./Comm. Optimization

imi Data Distributi
— Optimize parallel data layout ata Distribution

and Partitioning

(IPDPS’03)
* Integrated System Parallel Code
— (SC’02, Proc. IEEE 05) Fortran/C/...

OpenMP/MPI/Global Arrays
12-15 March 2012 SOS 16 12

Example: Single Term Optimizations

S(a,b,i,j) = ZA(a,c,i,k)B(b,e,f,l)C(d,f,j,k)D(c,d,e,l) 4N10 Ops
c,d,e, .k,

S(a,b.i, j) =Y Ala,c.i, k){Z C(d, f, j,k)[ZB(b, e, f,l)D(c,d,e,l)H
c.k d,f e,l

T1(b,c,d,) = ZB(b e, £,0)D(c,d,e,l) 2N6 Ops

T2(b,c, j.k) = ZTl(b ¢,d, [)C(d, [, J,k) 2N6 Ops
d,f

S(a,b,i,j) = Y T2b,c, j, k) A(a,c,i,k) 2N Ops

12-15 March 2012 SOS 16 13

Example: Multi-Term Optimization
(Factorization)

. Unoptimized:

Ztc d ab cdﬁ

S; Vea T Ui Ve — 20°V* + 30°V* ops

" -
* Single-term optimization:
o P T

214 4 213
Z(Zt{’vﬁﬁ@“”’vﬁ - 20 VLOV +20°V7 ops

* Factorization:

re = Z (tl."s;’ + ufjd)vz’j — 20°V* + 0°V? ops
c.d k J

* Improved operation count over single-term optimization

12-15 March 2012 SOS 16

14

— o

Lessons Learned from the TCE (1)

« DSLs can have a profound effect on productivity

— Implementation time of a new coupled cluster method reduced
from years to days (hours)

— Of ~4.5M lines of code in NWChem, approx. 3M+ have been
generated by a TCE prototype

* Rich opportunities for optimization
— Humans have a pretty good intuition for individual optimizations...
— But not so good with multiple optimizations (combinatorial
explosion)
— Computers are patient and thorough

» Specialized, time-consuming optimizations may be worth

the walit

— If your simulation requires a week or a month on an exascale
system, what's the harm in letting the compiler grind away for a
few hours to better optimize it?

12-15 March 2012 SOS 16 15

— o

Lessons Learned from the TCE (2)

 Important to consider generality of optimizations, tools
— Easy for everything to end up domain specific
— Structure of tools can help with generality
— Requires long, careful discussions with domain experts

* Full language vs code generator to plug into some other
framework vs embedding in a general purpose language?

— TCE code relies on NWChem as part of “runtime”
— User has to write driver for iteration, convergence

* |t is a lot of work to produce a quality “deep” DSL!
— Designing and implementing core language
— Optimizations, multiple backends
— Creating or interfacing with infrastructure

12-15 March 2012 SOS 16 16

Toward a Sustainable Environment
for Creating Sustainable DSLs

« Some aspects of creating DSLs are always going to

require work
— Developing a common understanding between domain scientists
and computer scientists
— Doing a thoughtful analysis of the domain and designing a
language for it

« Some aspects we can make less work
— Developing the general purpose parts of the DSL
— Targeting different backends/platforms
— Developing/interfacing with the infrastructure

12-15 March 2012 SOS 16

17

Embedded DSLs - Leveraging
General Purpose Languages (GPLSs)

* The significance of a DSL is the domain-specific part

 But in most cases you need more “around” it
— Loops, conditionals, basic operations on basic data types, ...

— Building a complete language requires much more work than
focusing on a domain-specific core

 Solution: embed DSL in a general purpose language
— “Small” DSLs only make sense this way
— Can facilitate interfacing for “large” DSLs
— Reuse existing language tool chain & environment

— Possible disadvantage: makes it easier for programmer to go
“outside” of DSL

12-15 March 2012 SOS 16

18

Which Host Language?

* Rich type system, expressive, extensible
» OO and/or functional features, generic programming
 High performance, sufficiently familiar to programmers

- Exascale features: asynchrony, data distribution, scalable
& lightweight synchronization, locality control

* Fortran? C?

o C++7?

 PGAS? (Co-Array Fortran, UPC)
« Scala?

« APGAS? (Chapel, X10)

12-15 March 2012 SOS 16

19

APGAS Global View Makes for Natural

Presentation of
Parallel Data
Structures
Simple
TCE input
Chapel version

by Brad Chamberlain, Cray
(working code!)

3000;
100;

range V
range O

index a,b,c,d,e,f : V;
index i,3j,k,1 : O;
mlimit = 100GB;

procedure P(in A[V,V,0,0

1y
in Cc[V,Vv,0,0], in D[V,V,V,0],
out S[V,V,0,0])=
begin
Sla,b,1i,J] == sum|[Ala,c,i,k] * Bl[b,e, f,1]
* Cld,f,3,k] * D[c,d,e, 1],
{c,d,e,f,k,1}]
end

config const V = 3000,
O = 100;
const DV = 1..V,
DO = 1..0;
const DVVOO = [DV, DV, DO, DO,
DVVVO = [DV, DV, DV, DOJ;
var A, C, S: [DVVOO] real,
B, D: [DVVVO] real;
forall (a, b, i, j) in DVVOO do
S(a,b,i,3) = + reduce [(c,d,e,f,k,1) in

(A(a,c,1,k) * B(b,e, £,1)

) ;

[DV, DV, DV, DV, DO, DO]]
* C(d,£,3,k)

* D(cldlell));

12-15 March 2012

SOS 16

20

Creating DSLs without Creating New
Languages

* Modern languages are increasingly using libraries as an

intrinsic part of their design

— Separate core language elements from “conveniences” that can
be built on the core

— Examples: C stdlib; C++ STL, Boost; Java everything; ...
» Chapel supports...

— Generic programming

— Operator overloading

— Complex data structures

— User-defined data distributions
— User-defined (parallel) iterators

* Do we even need to extend the language when we have
such features available?

12-15 March 2012 SOS 16

21

Turning Libraries into Languages

* Libraries are commonly used to provide domain-specific
abstractions without the syntax

« But libraries are black boxes — immutable and opaque

« What if libraries carried with them (machine-actionable)
meta-information about their internals, how they could be

specialized or transformed?

— Like Telescoping Languages, but more

— Use DSLs for compiler transformations

— Extend X10 to utilize meta-information (written in X10)

 Allow compiler to reason about, optimize library-provided
operations

* Makes it easier for DSL developer to leverage libraries
into core infrastructure

12-15 March 2012 SOS 16

22

Language and Runtime Support for
Effective Exascale Execution (LARUS)

Proposal to 2012 X-Stack Research

- Oak Ridge National .
Laboratory °

- IBM

« Ohio State University .

 Pacific Northwest National
Laboratory .

* Rice University

 University of Houston .

 University of lllinois .

* Cray)

* NVIDIA

12-15 March 2012 SOS 16

APGAS languages as a base
Base language and DSL-related

capabilities

Compiler optimizations and
back-end code generation
Runtime scalability and
adaptivity

Resilience

Power and energy

Tools

Migration paths

23

Summary

« Computational science and engineering applications will
constitute a significant part of the cost of exascale computing

* The exascale hardware environment will be notably different
than computational scientists have dealt with in the past

* Need to simplify task of mapping equations to code and code
to hardware

DSLs are one means to facilitate mapping equations to code
— Significant benefits, but non-negligible costs

Appropriate underlying GPL facilitates the second

Embedding in GPLs simplifies DSL development, leverages
existing tools and environment

Rich GPL may make DSLs unnecessary in some cases
« Annotated libraries to simplify DSL creation

12-15 March 2012 SOS 16

24

